Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 MRI Database 
SEARCH FOR    
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
previous     6 - 10 (of 150)     next 
Ma-Ma   Ma-Ma     Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   MA-MA   MA-MA   MA-MA   MA-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Me   ME-Me   Me-Mi   Mn-Mo   Mo-Mo   Mo-Mo   Mo-MR   MR-MR   MR-MS   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mz   
MRI Resources 
MRI Reimbursement - MRI Physics - Contrast Enhanced MRI - Education - Databases - DICOM
 
MagnetForum -
there are related threads
 
A magnet is by definition an object with magnetic properties (magnetism) that attracts iron and produces a magnetic field. It can be a permanent magnet or an electromagnet.
Permanent magnets do not rely upon outside influences to generate their field. In permanent magnets are the atoms and molecules ordered in long range. The specific electron configuration and the distance of the atoms is what lead to this long range ordering. The electrons exist in a lower energy state if they all have the same orientation. Magnetic domains can be likened to microscopic neighborhoods in which there is a strong reinforcing interaction between particles, resulting in a high degree of order. The greater the degree of ordering within and between domains, the greater the resulting field will be. Long range ordering is one of the hallmarks of a ferromagnetic material.
A current carrying conductor for example a piece of wire, produces a magnetic field that encircles the wire. An electromagnet, in its simplest form, is a wire that has been coiled into one or more loops. This coil is known as a solenoid. The more loops of wire and the greater the current, the stronger the field will be.
Superconducting magnets are a special type of electromagnets, often used in MRI machines with high field strength.
spacer

• View the NEWS results for 'Magnet' (315).Open this link in a new window.

• View the DATABASE results for 'Magnet' (669).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic Field
   by hyperphysics.phy-astr.gsu.edu    
  News & More:
Philips Signs Research Agreement to Explore New Magnet Technologies
Monday, 5 December 2022   by www.itnonline.com    
Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review
Saturday, 1 October 2022   by www.dovepress.com    
Magnetic seeds used to heat and kill cancer
Tuesday, 1 February 2022   by www.sciencedaily.com    
Harvard Scientists Create Nanoscale MRI
Monday, 28 April 2014   by www.meddeviceonline.com    
How Academic Research Solved the Puzzle of MRI and CAT Scanning
Monday, 21 April 2014   by www.engineering.com    
Magnet Stability
 
Temporal stability of the magnetic field. Factors to be considered are field decay of superconducting magnets in persistent mode, aging of permanent magnet material, temperature dependence of permanent magnet material, and temporal stability of magnet power supplies.
spacer
 
Further Reading:
  Basics:
What affects the strength of a magnet?
   by my.execpc.com    
  News & More:
Superconducting Magnets
   by hyperphysics.phy-astr.gsu.edu    
MRI Resources 
Non-English - Examinations - Fluorescence - Liver Imaging - MR Myelography - Spectroscopy
 
Magnetic Dipole
 
North and south magnetic poles separated by a finite distance. An electric current loop, including the effective current of a spinning nucleon or nucleus, can create an equivalent magnetic dipole.
spacer

• View the DATABASE results for 'Magnetic Dipole' (5).Open this link in a new window

Magnetic FieldForum -
there are related threads
 
(H) The region surrounding a magnet (or current carrying conductor) is equipped with certain properties like that a small magnet in such a region experiences a torque that tends to align it in a given direction. Magnetic field is a vector quantity; the direction of the field is defined as the direction that the north pole of the small magnet points when in equilibrium.
mri safety guidance
MRI Safety Guidance
A magnetic field produces a magnetizing force on a body within it. Although the dangers of large magnetic fields are largely hypothetical, this is an area of potential concern for safety limits. Formally, the forces experienced by moving charged particles, current carrying wires, and small magnets in the vicinity of magnet are due to magnetic induction (B), which includes the effect of magnetization, while the magnetic field (H) is defined so as not to include magnetization. However, both B and H are often loosely used to denote magnetic fields.
spacer

• View the NEWS results for 'Magnetic Field' (25).Open this link in a new window.

• View the DATABASE results for 'Magnetic Field' (219).Open this link in a new window

 
Further Reading:
  Basics:
Magnet basics
   by my.execpc.com    
Magnetic Field
   by hyperphysics.phy-astr.gsu.edu    
Magnetic Field
   by en.wikipedia.org    
How strong are magnets?
   by my.execpc.com    
  News & More:
Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review
Saturday, 1 October 2022   by www.dovepress.com    
Impact of the Lorentz force on electron track structure and early DNA damage yields in magnetic resonance-guided radiotherapy
Friday, 30 September 2022   by www.nature.com    
Two stuck to MRI machine for 4 hrs
Tuesday, 11 November 2014   by www.mumbaimirror.com    
Commission proposes to revamp rules to protect EU workers from harmful electromagnetic fields
Tuesday, 14 June 2011   by finchannel.com    
Magnetic fields drive drug-loaded nanoparticles to reduce blood vessel blockages in an animal study
Monday, 19 April 2010   by www.eurekalert.org    
Magnetic Field Gradient
 
Magnetic field gradients are used to change the strength of the magnetic field Bo in a certain direction. Gradients are used in MR imaging with selective excitation to select a region for imaging and also to be able to encode the location of MR signals received from the object being imaged. The field strength is measured in Tesla per meter (T/m).
spacer

• View the DATABASE results for 'Magnetic Field Gradient' (28).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic Field
   by hyperphysics.phy-astr.gsu.edu    
MRI Resources 
DICOM - Musculoskeletal and Joint MRI - Devices - Used and Refurbished MRI Equipment - Sequences - MRI Technician and Technologist Career
 
previous       6 - 10 (of 150)      next 
Ma-Ma    Ma-Ma    Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   MA-MA   MA-MA   MA-MA   MA-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Me   ME-Me   Me-Mi   Mn-Mo   Mo-Mo   Mo-Mo   Mo-MR   MR-MR   MR-MS   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mz   
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]